
JMLR: Workshop and Conference Proceedings vol (2010) 1–32 24th Annual Conference on Learning Theory

Sample Complexity Bounds for Differentially Private
Learning

Kamalika Chaudhuri kamalika@cs.ucsd.edu
University of California, San Diego
9500 Gilman Drive #0404
La Jolla, CA 92093-0404

Daniel Hsu dahsu@microsoft.com

Microsoft Research New England

One Memorial Drive

Cambridge, MA 02142

Editor: Sham Kakade, Ulrike von Luxburg

Abstract

This work studies the problem of privacy-preserving classification – namely, learning a
classifier from sensitive data while preserving the privacy of individuals in the training set.
In particular, the learning algorithm is required in this problem to guarantee differential
privacy, a very strong notion of privacy that has gained significant attention in recent years.

A natural question to ask is: what is the sample requirement of a learning algorithm
that guarantees a certain level of privacy and accuracy? We address this question in the
context of learning with infinite hypothesis classes when the data is drawn from a continuous
distribution. We first show that even for very simple hypothesis classes, any algorithm that
uses a finite number of examples and guarantees differential privacy must fail to return an
accurate classifier for at least some unlabeled data distributions. This result is unlike the
case with either finite hypothesis classes or discrete data domains, in which distribution-free
private learning is possible, as previously shown by Kasiviswanathan et al. (2008).

We then consider two approaches to differentially private learning that get around
this lower bound. The first approach is to use prior knowledge about the unlabeled data
distribution in the form of a reference distribution U chosen independently of the sensitive
data. Given such a reference U , we provide an upper bound on the sample requirement that
depends (among other things) on a measure of closeness between U and the unlabeled data
distribution. Our upper bound applies to the non-realizable as well as the realizable case.
The second approach is to relax the privacy requirement, by requiring only label-privacy –
namely, that the only labels (and not the unlabeled parts of the examples) be considered
sensitive information. An upper bound on the sample requirement of learning with label
privacy was shown by Chaudhuri et al. (2006); in this work, we show a lower bound.

Keywords: List of keywords

1. Introduction

As increasing amounts of personal data is collected, stored and mined by companies and
government agencies, the question of how to learn from sensitive datasets while still main-
taining the privacy of individuals in the data has become very important. Over the last
few years, the notion of differential privacy (Dwork et al., 2006) has received a significant
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amount of attention, and has become the de facto standard for privacy-preserving compu-
tation. In this paper, we study the problem of learning a classifier from a dataset, while
simultaneously guaranteeing differential privacy of the training data.

The key issue in differentially-private computation is that given a certain amount of
resources, there is usually a tradeoff between privacy and utility. In classification, a natural
measure of utility is the classification accuracy, and data is a scarce resource. Thus, a key
question in differentially-private learning is: how many examples does a learning algorithm
need to guarantee a certain level of privacy and accuracy? In this paper, we study this
question from an information-theoretic perspective – namely, we are concerned with the
sample complexity, and not the computational complexity of the learner.

This question was first considered by Kasiviswanathan et al. (2008), who studied the
case of finite hypothesis classes, as well as the case of discrete data domains. They showed
that in these two cases, one can obtain any given privacy guarantee and generalization
error, regardless of the unlabeled data distribution with a modest increase in the worst-case
sample requirement.

In this paper, we consider the sample complexity of differentially private learning in
the context of infinite hypothesis classes on continuous data distributions. This is a very
general class of learning problems, and includes many popular machine-learning tasks such
as learning linear classifiers when the examples have real-valued features, which cannot be
modeled by finite hypothesis classes or hypothesis classes over discrete data domains.

Surprisingly, we show that the results of Kasiviswanathan et al. (2008) do not extend
to infinite hypothesis classes on continuous data distributions. As an example, consider the
class of thresholds on the unit interval. This simple learning problem has VC dimension 1,
and thus for all unlabeled data distributions, it can be learnt (non-privately) with error ε
given at most Õ(1

ε ) examples1. We show that even for this very simple hypothesis class,
any algorithm that uses a bounded number of examples and guarantees differential privacy
must fail to return an accurate classifier for at least some unlabeled data distributions.

The key intuition behind our proof is that if most of the unlabeled data is concentrated
in a small region around the best classifier, then, even slightly perturbing the best classifier
will result in a large classification error. As the process of ensuring differential privacy
necessarily involves some perturbation – see, for example, Dwork et al. (2006), unless the
algorithm has some prior public knowledge about the data distribution, the number of
samples required to learn privately grows with growing concentration of the data around
the best classifier.

How can we then learn privately in infinite hypothesis classes over continuous data
distributions? One approach is to use some prior information about the data distribution
that is known independently of the sensitive data. Another approach is to relax the privacy
requirements. In this paper, we examine both approaches.

First, we consider the case when the learner has access to some prior information on
the unlabeled data. In particular, the learner knows a reference distribution U that is close
to the unlabeled data distribution. Similar assumptions are common in Bayesian learning,
and PAC-Bayes style bounds have also been studied in the learning theory literature, for
example, by McAllester (1998).

1. Here the Õ notation hides factors logarithmic in 1/ε
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Under this assumption, we provide an algorithm for learning with α-privacy, excess
generalization error ε, and confidence 1−δ, using Õ(dU log(κ/ε)( 1

ε2
+ 1
εα)) samples. Here α is

a privacy parameter (where, lower α implies a stronger privacy guarantee), U is the reference
distribution, dU is the doubling dimension of its disagreement metric (Bshouty et al., 2009),
and κ is a smoothness parameter that we define. The quantity dU measures the complexity
of the hypothesis class with respect to U (see (Bshouty et al., 2009) for a discussion), and
we assume that it is finite. The smoothness parameter measures how close the unlabeled
data distribution is to U (smaller κ means closer), and is motivated by notions of closeness
used in Dasgupta (2005) and Freund et al. (1997). Thus the sample requirement of our
algorithm grows with increasing distance between U and the unlabeled data distribution.
Our algorithm works in the non-realizable case, that is, when no hypothesis in the class
has zero error; using standard techniques, a slightly better bound of Õ(dU log(κ/ε)

εα ) can be
obtained in the realizable setting. However, like the results of Kasiviswanathan et al. (2008),
our algorithm is computationally inefficient in general.

The main difficulty in reducing the differentially-private learning algorithms of Ka-
siviswanathan et al. (2008) to infinite hypothesis classes on continuous data distributions is
in finding a suitable finite cover of the class with respect to the unlabeled data. This issue
is specific to our particular problem: for non-private learning, a finite cover can always be
computed based on the (sensitive) data, and for finite hypothesis classes, the entire class is
a cover. The main insight behind our upper bound is that when the unlabeled distribution
D is close to the reference distribution U , then a cover of U is also a possibly coarser cover
of D. Since one can compute a private cover of U independent of the sensitive data, we
simply compute a finer cover of U , and learn over this fine cover using standard techniques
such as the exponential mechanism (McSherry and Talwar, 2007).

Next we relax the privacy requirement by requiring only label privacy. In other words,
we assume that the unlabeled part of the examples are not sensitive, and the only private
information is the labels. This setting was considered by Chaudhuri et al. (2006). An
example when this may be applicable is in predicting income from public demographic
information. Here, while the label (income) is private, the demographic information of
individuals, such as education, gender, and age may be public.

In this case, we provide lower bounds to characterize the sample requirement of label-
private learning. We show two results, based on the value of α and ε. For small ε and α
(that is, for high privacy and accuracy) we show that any learning algorithm for a given
hypothesis class that guarantees α-label privacy and ε accuracy necessarily requires at least
Ω( d

αε) examples. Here d is the doubling dimension of the disagreement metric at a certain
scale, and is a measure of the complexity of the hypothesis class on the unlabeled data
distribution. This bound holds when the hypothesis class has finite VC dimension. For
larger α and ε, our bounds are weaker but more general; we show a lower bound of Ω(d

′

α ) on
the sample requirement that holds for any α and ε, and do not require the VC dimension
of the hypothesis class to be finite. Here d′ is the doubling dimension of the disagreement
metric at a certain scale.

The main idea behind our stronger label privacy lower bounds is to show that differ-
entially private learning algorithms necessarily perform poorly when there is a large set of
hypotheses such that every pair in the set labels approximately 1/α examples differently.
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We then show that such large sets can be constructed when the doubling dimension of the
disagreement metric of the hypothesis class with respect to the data distribution is high.

How do these results fit into the context of non-private learning? For non-private learn-
ing, sample requirement bounds based on the doubling dimension of the disagreement metric
has been extensively studied by (Bshouty et al., 2009); in the realizable case, they show an

upper bound of Õ( d̄ε ) for learning with accuracy ε, where d̄ is again the doubling dimension
of the disagreement metric at a certain scale. These bounds are incomparable to ours in
general, as the doubling dimensions in the two bounds are with respect to different scales;
however, we can compare them for hypothesis classes and data distributions for which the
doubling dimension of the disagreement metric is equal at all scales. An example is learning
halfspaces with respect to the uniform distribution on the sphere. For such problems, on
the upper bound side, we need a factor of O( log(κ/ε)

α ) times more examples to learn with
α-privacy. On the other hand, our lower bounds indicate that for small α and ε, even if we
only want α-label privacy, the sample requirement can be as much as a factor of Ω( 1

α) more
than the upper bound for non-private learning.

Finally, one may be tempted to think that we can always discretize a data domain or a
hypothesis class, and therefore in practice we are likely to only learn finite hypothesis classes
or over discrete data domains. However, there are several issues with such discretization.
First, if we discretize either the hypothesis class or the data, then the sample requirement
of differentially private learning algorithms will grow as the discretization grows finer, in-
stead of depending on intrinsic properties of the problem. Second, as our α-privacy lower
bound example shows, indiscriminate discretization without prior knowledge of the data can
drastically degrade the performance of the best classifier in a class. Finally, infinite hypoth-
esis classes and continuous data domains provide a natural abstraction for designing many
machine learning algorithms, such as those based on convex optimization or differential ge-
ometry. Understanding the limitations of differentially private learning on such hypothesis
classes and data domains is useful in designing differentially private approximations to these
algorithms.

The rest of our paper is organized as follows. In Section 2, we define some preliminary
notation, and explain our privacy model. In Section 3, we present our α-privacy lower
bound. Our α-privacy upper bound is provided in Section 4. In Section 5, we provide
some lower bounds on the sample requirement of learning with α-label privacy. Finally, the
proofs of most of our results are in the appendix.

1.1. Related work

The work most related to ours is Kasiviswanathan et al. (2008), Blum et al. (2008) and
Beimel et al. (2010), each of which deals with either finite hypothesis classes or discrete
data domains.

Kasiviswanathan et al. (2008) initiated the study of the sample requirement of differentially-
private learning. They provided a (computationally inefficient) α-private algorithm that

learns any finite hypothesis class H with error at most ε using at most Õ( log |H|
αε ) examples

in the realizable case. For the non-realizable case, they provided an algorithm with a sam-
ple requirement of Õ(log |H| · ( 1

αε + 1
ε2

)). Moreover, using a result from Blum et al. (2008),
they provided a computationally inefficient α-private algorithm that learns a hypothesis

4



Sample Complexity Bounds for Differentially Private Learning

class with VC-dimension V and data dimension n with at most Õ( nV
αε3

) examples, provided
the data domain is {−1, 1}n . The latter result does not apply when the data is drawn
from a continuous distribution; moreover, their results cannot be directly extended to the
continuous case.

The first work to study lower bounds on the sample requirement of differentially private
learning was Beimel et al. (2010). They show that any α-private algorithm that selects a
hypothesis from a specific set Cε requires at least Ω̃(log(|Cε|)/α) samples to achieve error
ε. Here Cε is an ε-cover as well as an ε-packing of the hypothesis class H with respect
to every distribution over the discrete data domain. They also show an upper bound of
Õ(log(|Cε|)/(αε)). Such a cover Cε does not exist for continuous data domains; as a result
their upper bounds do not apply to our setting. Moreover, unlike our lower bounds, their
lower bound only applies to algorithms of a specific form (namely, those that output a
hypothesis in Cε), and it also does not apply when we only require the labels to be private.

For the setting of label privacy, Chaudhuri et al. (2006) show an upper bound for PAC-
learning in terms of the VC dimension of the hypothesis class. We show a result very similar
to theirs in the appendix for completeness, and we show lower bounds for learning with label-
privacy which indicate that their bounds are almost tight, in terms of the dependence on α
and ε.

Zhou et al. (2009) study some issues in defining differential privacy when dealing with
continuous outcomes; however, they do not consider the question of learning classifiers on
such data.

Finally, a lot of our work uses tools from the theory of generalization bounds. In
particular, some of our upper and lower bounds are inspired by Bshouty et al. (2009),
which bounds the sample complexity of (non-private) classification in terms of the doubling
dimension of the disagreement metric.

Other related work on privacy. The issue of privacy in data analysis of sensitive
information has long been a source of problems for curators of such data, and much of this
is due to the realization that many simple and intuitive mechanisms designed to protect
privacy are simply ineffective. For instance, the work of Narayanan and Shmatikov (2008)
showed that an anonymized dataset released by Netflix revealed enough information so that
an adversary, by knowing just a few of the movies rated by a particular user, would be able
to uniquely identify such a user in the data set and determine all of his movie ratings.
Similar attacks have been demonstrated on private data in other domains as well including
social networks (Backstrom et al., 2007) and search engine query logs (Jones et al., 2007).
Even releasing coarse statistics without proper privacy safeguards can be problematic. This
was recently shown by Wang et al. (2009) in the context of genetic data, where a correlation
matrix of genetic markers compiled from a group of individuals contained enough clues to
uniquely pinpoint individuals in the dataset and learn of their private information, such as
whether or not they had certain diseases.

In order to reason about privacy guarantees (or lack thereof), we need a formal definition
of what it means to preserve privacy. In our work, we adopt the notion of differential privacy
due to Dwork et al. (2006), which has over the last few years gained much popularity.
Differential privacy is known to be a very strong notion of privacy: it has strong semantic
guarantees (Kasiviswanathan and Smith, 2008) and is resistant to attacks that many earlier
privacy definitions are susceptible to (Ganta et al., 2008b).
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There has been a significant amount of work on differential privacy applied to a wide
variety of data analysis tasks (Dwork et al., 2006; Chaudhuri and Mishra, 2006; Nissim
et al., 2007; Barak et al., 2007; McSherry and Mironov, 2009). Some work that is relevant
to ours include Blum et al. (2008), which provides a general method for publishing datasets
on discrete data domains while preserving differential privacy so that the answers to queries
from a function class with bounded VC dimension will be approximately preserved after
the applying the sanitization procedure. More work on this line includes Roth (2010) and
Gupta et al. (2011). A number of learning algorithms have also been suitably modified to
guarantee differential privacy. For instance, both the classes of statistical query algorithms
and the class of methods based on L2-regularized empirical risk minimization with certain
types of convex losses can be made differentially private (Blum et al., 2005; Chaudhuri
et al., 2011).

There has also been some prior work on providing lower bounds on the loss of accuracy
that any differentially private mechanism would suffer; much of this work is in the context
of releasing answers to some a of queries made on a database of n individuals. The first
such work is by (Blum et al., 2008), which shows that no differentially private mechanism
can hope to release with a certain amount of accuracy the answer to a number of median
queries when the data lies on a real line. This result is similar in spirit to our Theorem 5,
but applies to a much harder problem, namely data release. Other relevant work includes
(Hardt and Talwar, 2010), which uses a packing argument similar to ours to provide a lower
bound on the amount of noise any differentially private mechanism needs to add to the
answer to k linear queries on a database of n people.

There has also been a significant amount of prior work on privacy-preserving data min-
ing (Agrawal and Srikant, 2000; Evfimievski et al., 2003; Sweeney, 2002; Machanavajjhala
et al., 2006), which spans several communities and uses privacy models other than differ-
ential privacy. Many of the models used have been shown to be susceptible to various
attacks, such as composition attacks, where the adversary has some amount of prior knowl-
edge (Ganta et al., 2008a). An alternative line of privacy work is in the Secure Multiparty
Computation setting due to Yao (1982), where the sensitive data is split across several ad-
versarial databases, and the goal is to compute a function on the union of these databases.
This is in contrast with our setting, where a single centralized algorithm can access the
entire dataset.

2. Preliminaries

2.1. Privacy model

We use the differential privacy model of Dwork et al. (2006). In this model, a private
database DB ⊆ Z consists of m sensitive entries from a domain Z; each entry in DB is a
record about an individual (e.g., their medical history) that one wishes to keep private.

The database DB is accessed by users through a sanitizerM . The sanitizer, a randomized
algorithm, is said to preserve differential privacy if the value of any one individual in the
database does not significantly alter the output distribution of M .

Definition 1 A randomized mechanism M guarantees α-differential privacy if, for all
databases DB1 and DB2 that differ by the value of at most one individual, and for every set
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G of possible outputs of M ,

PrM [M(DB1) ∈ G] ≤ PrM [M(DB2) ∈ G] · eα.

We emphasize that the probability in the definition above is only with respect to the internal
randomization of the algorithm; it is independent of all other random sources, including any
that may have generated the values of the input database.

Differential privacy is a strong notion of privacy (Dwork et al., 2006; Kasiviswanathan
and Smith, 2008; Ganta et al., 2008b). In particular, if a sanitizer M ensures α-differential
privacy, then, an adversary who knows the private values of all the individuals in the
database except for one and has arbitrary prior knowledge about the value of the last
individual, cannot gain additional confidence about the private value of the last individual
by observing the output of a differentially private sanitizer. The level of privacy is controlled
by α, where a lower value of α implies a stronger guarantee of privacy.

2.2. Learning model

We consider a standard probabilistic learning model for binary classification. Let P be a
distribution over X × {±1}, where X is the data domain and {±1} are the possible labels.
We use D to denote the marginal of P over the data domain X . The classification error of
a hypothesis h : X → {±1} with respect to a data distibution P is

Pr(x,y)∼P [h(x) 6= y].

We denote by S ∼ Pm an i.i.d. draw ofm labeled examples S = {(x1, y1), . . . , (xm, ym)} ⊆
X ×{±1} from the distribution P. This process can equivalently be seen as drawing an un-
labeled sample X := {x1, . . . , xm} from the marginal D, and then, for each x ∈ X, drawing
the corresponding label y from the induced conditional distribution.

A learning algorithm is given as input a set of m labeled examples S ∼ Pm, a target
accuracy parameter ε ∈ (0, 1), and target confidence parameter δ ∈ (0, 1). Its goal is to
return a hypothesis h : X → {±1} such that its excess generalization error with respect to
a specified hypothesis class H

Pr(x,y)∼P [h(x) 6= y]− inf
h′∈H

Pr(x,y)∼P [h′(x) 6= y]

is at most ε with probability at least 1− δ over the random choice of the sample S ∼ Pm,
as well as any internal randomness of the algorithm.

We also occasionally adopt the realizable assumption (with respect to H). The realizable
assumption states that there exists some h∗ ∈ H such that Pr(x,y)∼P [h∗(x) 6= y] = 0. In
this case, the excess generalization error of a hypothesis h is simply its classification error.
Without the realizable assumption, there may be no classifier in the hypothesis class H
with zero classification error, and we refer to this as the non-realizable case.

2.3. Privacy-preserving classification

In privacy-preserving classification, we assume that the database is a training dataset drawn
in an i.i.d manner from some data distribution P, and that the sanitization mechanism is
a learning algorithm that outputs a classifier based on the training data. In this paper, we
consider two possible privacy requirements on our learning algorithms.
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Definition 2 A randomized learning algorithm A guarantees α-label privacy (A is α-label
private) if, for any two datasets S1 = {(x1, y1), . . . , (xm−1, ym−1), (xm, ym)} and S2 =
{(x1, y1), . . . , (xm−1, ym−1), (xm, y

′
m)} differing in at most one label y′m, and any set of out-

puts G of A,
PrA[A(S1) ∈ G] ≤ PrA[A(S2) ∈ G] · eα.

Definition 3 A randomized learning algorithm A guarantees α-privacy (A is α-
private) if, for any two datasets S1 = {(x1, y1), . . . , (xm−1, ym−1), (xm, ym)} and S2 =
{(x1, y1), . . . , (xm−1, ym−1), (x′m, y

′
m)} differing in at most one example (x′m, y

′
m), and any

set of outputs G of A,

PrA[A(S1) ∈ G] ≤ PrA[A(S2) ∈ G] · eα.

Note that if the input dataset S is a random variable, then for any value S′ ⊆ X ×{±1} in
the range of S, the conditional probability distribution of A(S) | S = S′ is determined only
by the algorithm A and the value S′; it is independent of the distribution of the random
variable S. Therefore, for instance,

PrS,A[A(S) ∈ G | S = S′] = PrA[A(S′) ∈ G].

for any S′ ⊆ X × {±1} and any set of outputs G.
The difference between the two notions of privacy is that for α-label privacy, the two

databases can differ only in the label of one example; whereas for α-privacy, the two
databases differ can differ in a complete example (both labeled and unlabeled parts). Thus,
α-label privacy only ensures the privacy of the label component of each example; it makes
no guarantees about the unlabeled part. If a classification algorithm guarantees α-privacy,
then it also guarantees α-label privacy. Thus α-label privacy is a weaker notion of privacy
than α-privacy.

The notion of label privacy was also considered by Chaudhuri et al. (2006), who provided
an algorithm for learning with label privacy. For strict privacy, one would require the
learning algorithm to guarantee α-privacy; however, label privacy may also be an useful
notion. For example, if the data x represents public demographic information (e.g., age,
zip code, education), while the label y represents income level, an individual may consider
the label to be private but may not mind if others can infer her demographic information
(which could be relatively public already) by her inclusion in the database.

Thus, the goal of a α-private (resp. α-label private) learning algorithm is as follows.
Given a dataset S of size m, a privacy parameter α, a target accuracy ε, and a target
confidence parameter δ:

1. guarantee α-privacy (resp. α-label privacy) of the training dataset S;

2. with probability at least 1 − δ over both the random choice of S ∼ Pm and the
internal randomness of the algorithm, return a hypothesis h : X → {±1} with excess
generalization error

Pr(x,y)∼P [h(x) 6= y]− inf
h′∈H

Pr(x,y)∼P [h′(x) 6= y] ≤ ε.
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2.4. Additional definitions and notation

We now present some additional essential definitions and notation.

Metric spaces, doubling dimension, covers, and packings. A metric space (Z, ρ)
is a tuple, where Z is a set of elements, and ρ is a distance function from Z × Z to
{0} ∪ R+. Let (Z, ρ) be any arbitrary metric space. For any z ∈ Z and r > 0, let
B(z, r) = {z′ ∈ Z : ρ(z, z′) ≤ r} denote the ball centered at z of radius r.

The diameter of (Z, ρ) is sup{ρ(z, z′) : z, z′ ∈ Z}, the longest distance in the space. An
ε-cover of (Z, ρ) is a set C ⊆ Z such that for all z ∈ Z, there exists some z′ ∈ C such that
ρ(z, z′) ≤ ε. An ε-packing of (Z, ρ) is a set P ⊆ Z such that ρ(z, z′) > ε for all distinct
z, z′ ∈ P . Let Nε(Z, ρ) denote the size of the smallest ε-cover of (Z, ρ).

We define the doubling dimension of (Z, ρ) at scale ε, denoted as ddimε(Z, ρ), as the
smallest number d such that each ball B(z, ε) ⊆ Z of radius ε can be covered by at most
b2dc balls of radius ε/2, i.e. there exists z1, . . . , zb2dc ∈ Z such that B(z, ε) ⊆ B(z1, ε/2) ∪
. . . ∪B(zb2dc, ε/2). Notice that ddimε(Z, ρ) may increase or decrease with ε. The doubling
dimension of (Z, ρ) is sup{ddimr(Z, ρ) : r > 0}.
Disagreement metrics. The disagreement metric of a hypothesis class H with respect
to a data distribution D over X is the metric (H, ρD), where ρD is the following distance
function:

ρD(h, h′) := Prx∼D[h(x) 6= h′(x)].

The empirical disagreement metric of a hypothesis classH with respect to a data distribution
D over X is the metric (H, ρX), where ρX is the following distance function:

ρX(h, h′) :=
1

|X|
∑
x∈X

I[h(x) 6= h′(x)].

The disagreement metric (or empirical disagreement metric) is the proportion of unlabeled
examples on which h and h′ disagree with respect to D (or the uniform distribution over
X). We use the notation BD(h, r) to denote the ball centered at h of radius r with respect
to ρD, and BX(h, r) to denote the ball centered at h of radius r with respect to ρX .

Datasets and empirical error. For an unlabeled dataset X ⊆ X and a hypothesis
h : X → {±1}, we denote by SX,h := {(x, h(x)) : x ∈ X} the labeled dataset induced by
labeling X with h. The empirical error of a hypothesis h : X → {±1} with respect to
a labeled dataset S ⊆ X × {±1} is err(h, S) := (1/|S|)

∑
(x,y)∈S 1[h(x) 6= y] the average

number of mistakes that h makes on S; note that ρX(h, SX,h′) = err(h, SX,h′). Finally,
we informally use the Õ(·) notation to hide log(1/δ) factors, as well as factors that are
logarithmic in those that do appear.

3. Lower bounds for learning with α-privacy

In this section, we show a lower bound on the sample requirement of learning with α-
privacy. In particular, we show an example that illustrates that when the data is drawn
from a continuous distribution, for any M , all α-private algorithms that are supplied with at
most M examples fail to output a good classifier for at least one unlabeled data distribution.
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Our example hypothesis class is the class of thresholds on [0, 1]. This simple class has
VC dimension 1, and thus can be learnt non-privately with classification error ε given only
Õ(1/ε) examples, regardless of the unlabeled data distribution. However, Theorem 5 shows
that even in the realizable case, for every α-private algorithm that is given a bounded
number of examples, there is at least one unlabeled data distribution on which the learning
algorithm produces a classifier with error ≥ 1

5 , with probability at least 1/2 over its own
random coins.

The key intuition behind our example is that if most of the unlabeled data is concen-
trated in a small region around the best classifier, then, even slightly perturbing the best
classifier will result in a large classification error. As the process of ensuring differential
privacy necessarily involves some perturbation, unless the algorithm has some prior public
knowledge about the data distribution, the number of samples required to learn privately
grows with growing concentration of the data around the best classifier. As illustrated by
our theorem, this problem is not alleviated if the support of the unlabeled distribution is
known; even if the data distribution has large support, a large fraction of the data can still
lie in a region close to the best classifier.

Before we describe our example in detail, we first need a definition.

Definition 4 The class of thresholds on the unit interval is the class of functions hw :
[0, 1]→ {−1, 1} such that:

hw(x) :=

{
1 if x ≥ w
−1 otherwise.

Theorem 5 Let M > 2 be any number, and let H be the class of thresholds on the unit
interval [0, 1]. For any α-private algorithm A that outputs a hypothesis h ∈ H, there exists
a distribution P on labeled examples with the following properties:

1. There exists a threshold h∗ ∈ H with classification error 0 with respect to P.

2. For all samples S of size m ≤M drawn from P, with probability at least 1/2 over the
random coins of A, the hypothesis output by A(S) has classification error at least 1

5
with respect to P.

3. The marginal D of P over the unlabeled data has support [0, 1].

Proof Let η = 1
6+4 exp(αM) , and let U denote the uniform distribution over [0, 1]. Let

Z = {η, 2η, . . . ,Kη}, where K = b1/ηc − 1. We let Gz = [z − η/3, z + η/3] for z ∈ Z, and
let Gz ⊂ H be the subset of thresholds: Gz = {hτ |τ ∈ Gz}. We note that Gz ⊆ [0, 1] for all
z ∈ Z.

For each z ∈ Z, we define a distribution Pz over labeled examples as follows. First,
we describe the marginal Dz of Pz over the unlabeled data. A sample from Dz is drawn
as follows. With probability 1

2 , x is drawn from U ; with probability 1
2 , it is drawn from

uniformly from Gz. Now, an unlabeled example x drawn from Dz is labeled positive if
x ≥ z, and negative otherwise. We observe that for every such distribution Pz, there exists
a threshold, namely, hz that has classification error 0; in addition, the support of Dz is
[0, 1]. Moreover, there are b 1

η c − 1 such distributions Pz in all, and b 1
η c − 1 ≥ 5.

10
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We say that an α-private algorithm A succeeds on a sample S with respect to a distri-
bution P if with probability 1

2 over the random coins of A, the hypothesis output by A(S)
has classification error < 1

5 over P.
Suppose for the sake of contradiction that there exists an α-private algorithm A∗ such

that for all distributions P, there is at least one sample S of size ≤M drawn from P such
that A∗ succeeds on S with respect to P. Then, for all z ∈ Z, and for all Pz, there exists a
sample Sz of size m ≤M drawn from Pz such that A∗ succeeds on Sz with respect to Pz.

By construction, the Gz’s are disjoint, so

PrA∗ [A
∗(Sz) /∈ Gz] ≥

∑
z′∈Z\{z}

PrA∗ [A
∗(Sz) ∈ Gz′ ]. (1)

Furthermore, any Sz differs from Sz′ by at most m labeled examples, so because A∗ is
α-private, Lemma 22 that implies for any z′,

PrA∗ [A
∗(Sz) ∈ Gz′ ] ≥ e−αmPrA∗ [A

∗(Sz′) ∈ Gz′ ]. (2)

If A∗(Sz′) lies outside Gz′ , A∗(Sz′) classifies at least 1/4 fraction of the examples from Pz′
incorrectly, and thus A∗ cannot succeed on Sz′ with respect to Pz′ . Therefore, by the
assumption on A∗, for any z′,

PrA∗ [A
∗(Sz′) ∈ Gz′ ] ≥

1

2
. (3)

Combining Equations (1), (2), and (3) gives the inequality

PrA∗ [A
∗(Sz) /∈ Gz] ≥ e−αm ·

∑
z′∈Z\{z}

1

2
≥ e−αm ·

(
1

η
− 2

)
· 1

2
.

Since m ≤M , the quantity on the RHS of the above equation is more than 2
3 . A∗ therefore

does not succeed on Sz with respect to Pz, thus leading to a contradiction.

4. Upper bounds for learning with α-privacy

In this section, we show an upper bound on the sample requirement of learning with α-
privacy by presenting a learning algorithm that works on infinite hypothesis classes over
continuous data domains, under certain conditions on the hypothesis class and the data
distribution. Our algorithm works in the non-realizable case, that is, when there may be
no hypothesis in the target hypothesis class with zero classification error.

A natural way to extend the algorithm of Kasiviswanathan et al. (2008) to an infinite
hypothesis class H is to compute a suitable finite subset G of H that contains a hypothesis
with low excess generalization error, and then use the exponential mechanism of McSherry
and Talwar (2007) on G. To ensure that a hypothesis with low error is indeed in G, we would
like G to be an ε-cover of the disagreement metric (H, ρD). In a non-private or label-private
learning, we can compute such a G directly based on the unlabeled training examples; in our

11
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setting, the training examples themselves are sensitive, and this approach does not directly
apply.

The key idea behind our algorithm is that instead of using the sensitive data to compute
G, we can use a reference distribution U that is known independently of the sensitive data.
For instance, if the domain of the unlabeled data is bounded, then a reasonable choice for
U is the uniform distribution over the domain. Our key observation is that if U is close to
the unlabeled data distribution D according to a certain measure of closeness inspired by
Dasgupta (2005) and Freund et al. (1997), then a cover of the disagreement metric on H
with respect to U is a (possibly coarser) cover of the disagreement metric on H with respect
to D. Thus we can set G to be a fine cover of (H, ρU ), and this cover can be computed
privately as it is independent of the sensitive data.

Our algorithm works when the doubling dimension of (H, ρU ) is finite; under this condi-
tion, there is always such a finite cover G. We note that this is a fairly weak condition that
is satisfied by many hypothesis classes and data distributions. For example, any hypothesis
class with finite VC dimension will satisfy this condition for any unlabeled data distribution
U .

Finally, it may be tempting to think that one can further improve the sample requirement
of our algorithm by using the sensitive data to privately refine a cover of (H, ρU ) to a cover
of (H, ρD). However, our calculations show that naively refining such a cover leads to a
much higher sample requirement.

We now define our notion of closeness.

Definition 6 We say that a data distribution D is κ-smooth with respect to a distribution
U for some κ ≥ 1, if for all measurable sets A ⊆ X ,

Prx∼D[x ∈ A] ≤ κ · Prx∼U [x ∈ A].

This notion of smoothness is very similar to, but weaker than the notions of closeness
between distributions that have been used by (Dasgupta, 2005; Freund et al., 1997). We
note that if D is absolutely continuous with respect to U (i.e., U assigns zero probability to
a set only if D does also), then D is κ-smooth with respect to U for some finite κ.

4.1. Algorithm

Our main algorithm A1 is given in Figure 1. The first step of the algorithm calculates the
distance scale at which it should construct a cover of (H, ρU ). This scale is a function of |S|,
the size of the input data set S, and can be computed privately because |S| is not sensitive
information. A suitable cover of (H, ρU ) that is also a suitable packing of (H, ρU ) is then
constructed; note that such a set always exists because of Lemma 13. In the final step, an
exponential mechanism (McSherry and Talwar, 2007) is used to select a hypothesis from
the cover with low error. As this step of the algorithm is the only one that uses the input
data, the algorithm is α-private as long as this last step guarantees α-privacy.

4.2. Privacy and learning guarantees

Our first theorem states the privacy guarantee of Algorithm A1.

Theorem 7 Algorithm A1 preserves α-privacy.

12



Sample Complexity Bounds for Differentially Private Learning

Algorithm A1.
Input: private labeled dataset S ⊆ X × {±1}, public reference distribution U
over X , privacy parameter α ∈ (0, 1), accuracy parameter ε ∈ (0, 1), confidence
parameter δ ∈ (0, 1).
Output: hA ∈ H.

1. Solve the following equation to compute κ̂ > 0:

|S| = C ·
(

1

αε
+

1

ε2

)
·
(
dU · log

κ̂

ε
+ log

1

δ

)
,

where C is the constant from Theorem 8; let ε0 := ε/(4κ̂).

2. Let G be an ε0-packing of (H, ρU ) that is also an ε0-cover.

3. Randomly choose hA ∈ G according to the distribution (pg : g ∈ G), where
pg ∝ exp(−α|S| err(g, S)/2) for each g ∈ G, and return hA.

Figure 1: Learning algorithm for α-privacy.

Proof The algorithm only accesses the private dataset S in the final step. Because chang-
ing one labeled example in S changes err(g, S) by at most 1, this step is guarantees α-
privacy (McSherry and Talwar, 2007).

The next theorem provides an upper bound on the sample requirement of Algorithm
A1. This bound depends on the doubling dimension dU of (H, ρU ) and the smoothness
parameter κ, as well as the privacy and learning parameters α, ε, δ.

Theorem 8 Let P be a distribution over X × {±1} whose marginal over X is D. There
exists a universal constant C > 0 such that for any α, ε, δ ∈ (0, 1), the following holds. If

1. the doubling dimension dU of (H, ρU ) is finite,

2. D is κ-smooth with respect to U ,

3. S ⊆ X × {±1} is an i.i.d. random sample from P such that

|S| ≥ C ·
(

1

αε
+

1

ε2

)
·
(
dU · log

κ

ε
+ log

1

δ

)
, (4)

then with probability at least 1 − δ, the hypothesis hA ∈ H returned by A1(S,U , α, ε, δ)
satisfies

Pr(x,y)∼P [hA(x) 6= y] ≤ inf
h′∈H

Pr(x,y)∼P [h′(x) 6= y] + ε.

The proof of Theorem 8 is stated in Appendix C. If we have prior knowledge that some
hypothesis in H has zero error (the realizability assumption), then the sample requirement
can be improved with a slightly modified version of Algorithm A1. This algorithm, called
Algorithm A1r, is given in Figure 3 in Appendix C.
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Theorem 9 Let P be any probability distribution over X ×{±1} whose marginal over X is
D. There exists a universal constant C > 0 such that for any α, ε, δ ∈ (0, 1), the following
holds. If

1. the doubling dimension dU of (H, ρU ) is finite,

2. D is κ-smooth with respect to U ,

3. S ⊆ X × {±1} is an i.i.d. random sample from P such that

|S| ≥ C · 1

αε
·
(
dU · log(κ/ε) + log

1

δ

)
, (5)

4. there exists h∗ ∈ H with Pr(x,y)∼P [h∗(x) 6= y] = 0,

then with probability at least 1 − δ, the hypothesis hA ∈ H returned by A1r(S,U , α, ε, δ)
satisfies

Pr(x,y)∼P [hA(x) 6= y] ≤ ε.

Again, the proof of Theorem 9 is in Appendix C.

4.3. Examples

In this section, we give some examples that illustrate the sample requirement of Algorithm
A1.

First, we consider the example from the lower bound given in the proof of Theorem 5.

Example 1 The domain of the data is X := [0, 1], and the hypothesis class is H :=
Hthresholds = {ht : t ∈ [0, 1]} (recall, ht(x) = 1 if and only if x ≥ t). A natural choice
for the reference distribution U is the uniform distribution over [0, 1]; the doubling dimen-
sion of (H, ρU ) is 1 because every interval can be covered by two intervals of half the length.
Fix some M > 0 and α ∈ (0, 1), and let η := 1/(6 + 4 exp(αM)). For z ∈ [η, 1− η], let Dz
be the distribution on [0, 1] with density

pDz(x) :=

{ 1
2 + 3

4η if z − η/3 ≤ x ≤ z + η/3,
1
2 if 0 ≤ x < z − η/3 or z + η/3 < x ≤ 1.

Clearly, Dz is κ-smooth with respect to U for κ = 1
2 + 3

4η = O(exp(αM)). Therefore the
sample requirement of Algorithm A1 to learn with α-privacy and excess generalization error
ε is at most

C ·
(

1

εα
+

1

ε2

)
·
(
αM + log

1

δ

)
which is Õ(M) for constant ε, matching the lower bound from Theorem 5 up to constants.

Next, we consider two examples in which the domain of the unlabeled data X := Sn−1

is the uniform distribution on the unit sphere in Rn:

Sn−1 := {x ∈ Rn : ‖x‖ = 1}
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and the target hypothesis class H := Hlinear is the class of linear separators that pass
through the origin in Rn:

Hlinear := {hw : w ∈ Sn−1} where hw(x) = 1 if and only if w · x ≥ 0.

The examples will consider two different distributions over X .
A natural reference data distribution in this setting is the uniform distribution over

Sn−1; this will be our reference distribution U . It is known that dU := sup{ddimr(H, ρU ) :
r ≥ 0} = O(n) (Bshouty et al., 2009).

Example 2 We consider a case where the unlabeled data distribution D is concentrated
near an equator of Sn−1. More formally, for some vector u ∈ Sn−1, and γ ∈ (0, 1), we let
D be uniform over W := {x ∈ Sn−1 : |u · x| ≤ γ}; in other words, the unlabeled data lies in
a small band of width γ around the equator.

By Lemma 20 (see Appendix C), D is κ-smooth with respect to U for κ = 1
1−2 exp(−nγ2/2)

.

Thus the sample requirement of Algorithm A1 to learn with α-privacy and excess excess
generalization error ε is at most

C ·
(

1

αε
+

1

ε2

)
·
(
n · log

(
1

ε
· 1

1− 2 exp(−nγ2/2)

)
+ log

1

δ

)
.

When n is large and γ ≥ 1/
√
n, this bound is Õ( nαε + n

ε2
), where the Õ notation hides factors

logarithmic in 1/δ and 1/ε.

Example 3 Now we consider the case where the unlabeled data lies on two diametrically
opposite spherical caps. More formally, for some vector u ∈ Sn−1, and γ ∈ (0, 1), we now
let D be uniform over Sn−1 \W , where W := {x ∈ Sn−1 : |u · x| ≤ γ}; in other words, the
unlabeled data lies outside a band of width γ around the equator.

By Lemma 21 (see Appendix C), D is κ-smooth with respect to U for κ =
(

2
1−γ

)n−1
2

.

Thus the sample requirement of Algorithm A1 is to learn with α-privacy and excess gener-
alization error ε is at most:

C ·
(

1

αε
+

1

ε2

)
·
(
n2 · log

2

1− γ
+ n · log

1

ε
+ log

1

δ

)
.

Thus, for large n and constant γ < 1, the sample requirement of Algorithm A1 is Õ(n
2

ε2
+ n2

αε ).
So, even though the smoothness parameter κ is exponential in the dimension n, the sample
requirement remains polynomial in n.

5. Lower bounds for learning with α-label privacy

In this section, we provide two lower bounds on the sample complexity of learning with
α-label privacy. Our first lower bound holds when α and ε are small (that is, high privacy
and high accuracy), and when the hypothesis class has bounded VC dimension V . If these
conditions hold, then we show a lower bound of Ω(d/εα) where d is the doubling dimension
of the disagreement metric (H, ρD) at some scale.
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The main idea behind our bound is to show that differentially private learning algorithms
necessarily perform poorly when there is a large set of hypotheses such that every pair in
the set labels approximately 1/α examples differently. We then show that such large sets
can be constructed when the doubling dimension of the disagreement metric (H, ρD) is high.

5.1. Main results

Theorem 10 There exists a constant c > 0 such that the following holds. Let H be a
hypothesis class with VC dimension V < ∞, D be a distribution over X , X be an i.i.d.
sample from D of size m, and A be a learning algorithm that guarantees α-label privacy and
outputs a hypothesis in H. Let d := ddim12ε(H, ρD) > 2, and d′ := inf{ddim12r(H, ρD) :
ε ≤ r < ∆/6} > 2. If

ε < c ·
(

∆

V (1 + log(1/∆))

)
, α ≤ c ·

(
d′

V log(1/ε)

)
, and m < c ·

(
d

αε

)
where ∆ is the diameter of (H, ρD), then there exists a hypothesis h∗ ∈ H such that with
probability at least 1/8 over the random choice of X and internal randomness of A, the
hypothesis hA returned by A(SX,h∗) has classification error

Prx∼D [hA(x) 6= h∗(x)] > ε.

We note that the conditions on α and ε can be relaxed by replacing the VC dimension with
other (possibly distribution-dependent) quantities that determine the uniform convergence
of ρX to ρD; we used a distribution-free parameter to simplify the argument. Moreover,
the condition on ε can be reduced to ε < c for some constant c ∈ (0, 1) provided that there
exists a lower bound of Ω(V/ε) to (non-privately) learn H under the distribution D.

The proof of Theorem 10, which is in Appendix D, relies on the following lemma (possibly
of independent interest) which gives a lower bound on the empirical error of the hypothesis
returned by an α-label private learning algorithm.

Lemma 11 Let X ⊆ X be an unlabeled dataset of size m, H be a hypothesis class, A be a
learning algorithm that guarantees α-label privacy, and s > 0. Pick any h0 ∈ H. If P is an
s-packing of BX(h0, 4s) ⊆ H, and

m <
log
(
|P |
2 − 1

)
8αs

,

then there exists a subset Q ⊆ P such that

1. |Q| ≥ |P |/2;

2. for all h ∈ Q, PrA[A(SX,h) /∈ BX(h, s/2)] ≥ 1/2.

The proof of Lemma 11 is in Appendix D. The next theorem shows a lower bound
without restrictions on ε and α. Moreover, this bound also applies when the VC dimension
of the hypothesis class is unbounded. However, we note that this bound is weaker in that
it does not involve a 1/ε factor, where ε is the accuracy parameter.
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Theorem 12 Let H be a hypothesis class, D be a distribution over X , X be an i.i.d. sample
from D of size m, and A be a learning algorithm that guarantees α-label privacy and outputs
a hypothesis in H. Let d′′ := ddim4ε(H, ρD) ≥ 1. If ε ≤ ∆/2 and

m ≤ (d′′ − 1) log 2

α

where ∆ is the diameter of (H, ρD), then there exists h∗ ∈ H such that with probability at
least 1/2 over the random choice of X and internal randomness of A, the hypothesis hA
returned by A(SX,h∗) has classification error

Prx∼D [hA(x) 6= h∗(x)] > ε.

In other words, any α-label private algorithm for learning a hypothesis in H with error at
most ε ≤ ∆/2 must use at least (d′′ − 1) log(2)/α examples. Theorem 12 uses ideas similar
to those in (Beimel et al., 2010), but the result is stronger in that it applies to α-label
privacy and continuous data domains. A detailed proof is provided in Appendix D.

5.2. Example: linear separators in Rn

In this section, we show an example that illustrates our label privacy lower bounds. Our
example hypothesis class H := Hlinear is the class of linear separators over Rn that pass
through the origin, and the unlabeled data distribution D is the uniform distribution over
the unit sphere Sn−1. By Lemma 25 (see Appendix D), the doubling dimension of (H, ρD) at
any scale r is at least n−2. Therefore Theorem 10 implies that if α and ε are small enough,
any α-label private algorithm A that correctly learns all hypotheses h ∈ H with error ≤ ε
requires at least Ω( nεα) examples. (In fact, the condition on ε can be relaxed to ε ≤ c for
some constant c ∈ (0, 1), because Ω(n) examples are needed to even non-privately learn in
this setting (Long, 1995).) We also observe that this bound is tight (except for a log(1/δ)
factor): as the doubling dimension of D is at most n, in the realizable case, Algorithm A1r

using U := D learns linear separators with α-label privacy given Õ( nαε) examples.
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Appendix A. Metric spaces

Lemma 13 (Kolmogorov and Tikhomirov, 1961) For any metric space (Z, ρ) with
diameter ∆, and any ε ∈ (0,∆), there exists an ε-packing of (Z, ρ) that is also an ε-cover.

Lemma 14 (Gupta, Krauthgamer, and Lee, 2003) For any ε > 0 and r > 0, if a
metric space (Z, ρ) has doubling dimension d and z ∈ Z, then every ε-packing of (B(z, r), ρ)
has cardinality at most (4r/ε)d.

Lemma 15 Let (Z, ρ) be a metric space with diameter ∆, and r ∈ (0, 2∆). If ddimr(Z, ρ) ≥
d, then there exists z ∈ Z such that B(z, r) has an (r/2)-packing of size at least 2d.

Proof Fix r ∈ (0, 2∆) and a metric space (Z, ρ) with diameter ∆. Suppose that for every
z ∈ Z, every (r/2)-packing of B(z, r) has size less than 2d. For each z ∈ Z, let Pz be
an (r/2)-packing of (B(z, r), ρ) that is also an (r/2)-cover—this is guaranteed to exist by
Lemma 13. Therefore, for each z ∈ Z, B(z, r) ⊆

⋃
z′∈Pz B(z, r/2), and |Pz| < 2d. This

implies that ddimr(Z, ρ) is less than d.

Appendix B. Uniform convergence

Lemma 16 (Vapnik and Chervonenkis, 1971) Let F be a family of measurable func-
tions f : Z → {0, 1} over a space Z with distribution DZ . Denote by EZ [f ] the empirical
average of f over a subset Z ⊆ Z. Let εm := (4/m)(log(SF (2m)) + log(4/δ)), where SF (n)
is the n-th VC shatter coefficient with respect to F . Let Z be an i.i.d. sample of size m from
DZ . With probability at least 1− δ, for all f ∈ F ,

E[f ] ≥ EZ [f ]−min
{√

EZ [f ]εm,
√

E[f ]εm + εm

}
.

Also, with probability at least 1− δ, for all f ∈ F ,

E[f ] ≤ EZ [f ] + min
{√

E[f ]εm,
√
EZ [f ]εm + εm

}
.
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Lemma 17 Let H be a hypothesis class with VC dimension V . Fix any δ ∈ (0, 1), and let
X be an i.i.d. sample of size m ≥ V/2 from D. Let εm := (8V log(2em/V ) + 4 log(4/δ))/m.
With probability at least 1− δ, for all pairs of hypotheses {h, h′} ⊆ H,

ρD(h, h′) ≥ ρX(h, h′)−min
{√

ρX(h, h′)εm,
√
ρD(h, h′)εm + εm

}
.

Also, with probability at least 1− δ, for all pairs of hypotheses {h, h′} ⊆ H,

ρX(h, h′) ≥ ρD(h, h′)−
√
ρD(h, h′)εm.

Proof This is an immediate consequence of Lemma 16 as applied to the function class
F := {x 7→ 1[h(x) 6= h′(x)] : h, h′ ∈ H}, which has VC shatter coefficients SF (2m) ≤
SH(2m)2 ≤ (2em/V )2V by Sauer’s Lemma.

Appendix C. Proofs from Section 4

C.1. Some lemmas

We first give two simple lemmas. The first one, Lemma 18 states some basic properties of
the exponential mechanism.

Lemma 18 (McSherry and Talwar, 2007) Let I be a finite set of indices, and let ai ∈
R for all i ∈ I. Define the probability distribution p := (pi : i ∈ I) where pi ∝ exp(−ai)
for all i ∈ I. If j ∈ I is drawn at random according to p, then the following holds for any
element i0 ∈ I and any t ∈ R.

1. Let i ∈ I. If ai ≥ t, then Prj∼p[j = i] ≤ exp(−(t− ai0)).

2. Prj∼p[aj ≥ ai0 + t] ≤ |I| exp(−t).

Proof Fix any i0 ∈ I and t ∈ R. To show the first part of the lemma, note that for any
i ∈ I with ai ≥ t, we have

Prj∼p[j = i] =
exp(−ai)∑
i′∈I exp(−ai′)

≤ exp(−t)
exp(−ai0)

= exp(−(t− ai0)).

For the second part, we apply the inequality from the first part to all i ∈ I such that
ai ≥ ai0 + t, so

Prj∼p[aj ≥ ai0+t] =
∑
i∈I

1[ai ≥ ai0+t]·Prj∼p[j = i] ≤
∑
i∈I

1[ai ≥ ai0+t]·exp(−t) ≤ |I| exp(−t).

The next lemma is consequences of smoothness between distributions D and U .

Lemma 19 If D is κ-smooth with respect to U , then for all ε > 0, every ε-cover of (H, ρU )
is a κε-cover of (H, ρD).
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Proof Suppose C is an ε-cover of (H, ρU ). Then, for any h ∈ H, there exists h′ ∈ C such
that ρU (h, h′) ≤ ε. Fix such a pair h, h′, and let A := {x ∈ X : h(x) 6= h′(x)} be the subset
of X on which h and h′ disagree. As D is κ-smooth with respect to U , by definition of
smoothness,

ρD(h, h′) = Prx∼D[x ∈ A] ≤ κ · Prx∼D[x ∈ A] = κ · ρU (h, h′) ≤ κε,

and thus C is a κε-cover of (H, ρD).

C.2. Proof of Theorem 8

First, because of the lower bound on m := |S| from (4), the computed value of κ̂ in the first
step of the algorithm must satisfy κ̂ ≥ κ. Therefore, D is also κ̂-smooth with respect to U .
Combining this with Lemma 19, G is an (ε/4)-cover of (H, ρD). Moreover, as G is also an
(ε/4κ̂)-packing of U , from Lemma 14, the cardinality of G is at most |G| ≤ (16κ̂/ε)dU .

Define err(h) := Pr(x,y)∼P [h(x) 6= y]. Suppose that h∗ ∈ H minimizes err(h) over h ∈ H.
Let g0 ∈ G be an element of G such that ρD(h∗, g0) ≤ ε/4; g0 exists as G is an (ε/4)-cover
of (H, ρD). By the triangle inequality, we have that:

err(g0) ≤ err(h∗) + ρD(h∗, g0) ≤ err(h∗) + ε/4 (6)

Let E be the event that maxg∈G | err(g) − err(g, S)| > ε/4, and Ē be its complement. By
Hoeffding’s inequality, a union bound, and the lower bound on |S|, we have that for a large
enough value of the constant C in Equation (4),

PrS∼Pm [E] ≤ |G|max
g∈G

PrS∼Pm
[
| err(g)− err(g, S)| > ε

4

]
≤ 2|G| exp

(
−|S|ε

2

32

)
≤ δ

2
.

In the event Ē, we have err(hA) ≥ err(hA, S) − ε/4 and err(g0) ≤ err(g0, S) + ε/4 because
both hA and g0 are in G. Therefore,

PrS∼Pm,A1 [err(hA) > err(h∗) + ε] ≤ PrS∼Pm,A1

[
err(hA) > err(g0) +

3ε

4

]
≤ PrS∼Pm [E] + PrA1

[
err(hA) > err(g0) +

3ε

4
| Ē
]

≤ δ

2
+ PrA1

[
err(hA, S) > err(g0, S) +

ε

4
| Ē
]

≤ δ

2
+ |G| exp

(
−α|S|ε

8

)
≤ δ

2
+

(
16κ̂

ε

)dU
exp

(
−α|S|ε

8

)
≤ δ

Here, the first step follows from (7), and the final three inequalities follow from Lemma 18
(using ag = α|S| err(g, S)/2 for g ∈ G), the upper bound on |G|, and the lower bound on m
in (4).
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Algorithm A1r.
Input: private labeled dataset S ⊆ X × {±1}, public reference distribution U
over X , privacy parameter α ∈ (0, 1), accuracy parameter ε ∈ (0, 1), confidence
parameter δ ∈ (0, 1).
Output: hA ∈ H.

1. Solve the equation |S| = frealizable(α, ε, δ, κ̂) for κ̂ > 0, where

frealizable(α, ε, δ, κ̂) = C · 1

αε
·
(
dU · log(κ̂/ε) + log

1

δ

)
is the function from (5), and let ε0 := ε/(4κ̂).

2. Let G be an ε0-packing of (H, ρU ) that is also an ε0-cover; the existence of
such a set is guaranteed by Lemma 13.

3. Randomly choose hA ∈ G according to the distribution (pg : g ∈ G), where
pg ∝ exp(−α|S| err(g, S)/2) for each g ∈ G, and return hA.

Figure 2: Learning algorithm for α-privacy under the realizable assumption.

C.3. Proof of Theorem 9

The proof is very similar to the proof of Theorem 8.
First, because of the lower bound on m := |S| from (5), the computed value of κ̂ in the

first step of the algorithm must satisfy κ̂ ≥ κ. Therefore, D is also κ̂-smooth with respect
to U . Combining this with Lemma 19, as G is an (ε/4κ̂)-cover of U , G is an (ε/4)-cover of
(H, ρD). Moreover, as G is also an (ε/4κ̂)-packing of U , from Lemma 14, the cardinality of
G is at most |G| ≤ (16κ̂/ε)dU .

Define err(h) := Pr(x,y)∼P [h(x) 6= y]. Suppose that h∗ ∈ H minimizes err(h) over h ∈ H.
Recall that from the realizability assumption, err(h∗) = 0. Let g0 ∈ G be an element of
G such that ρD(h∗, g0) ≤ ε/4; g0 exists as G is an (ε/4)-cover of (H, ρD). By the triangle
inequality, we have that:

err(g0) ≤ err(h∗) + ρD(h∗, g0) ≤ ε/4 (7)

We define two events E1 and E2. Let G1 ⊂ G be the set of all g ∈ G for which err(g) ≥ ε.
The event E1 is the event that ming∈G1 err(g, S) > 9ε/10, and let Ē1 be its complement.
Applying the multiplicative Chernoff bounds, for a specific g ∈ G1,

PrS∼Pm

[
err(g, S) <

9

10
err(g)

]
≤ e−|S| err(g)/400 ≤ e−|S|ε/400.

The quantity on the right hand side is at most δ
4|G| ≤

δ
4|G1| for a large enough constant C

in Equation (5). Applying an union bound over all g ∈ G1, we get that

PrS∼Pm [Ē1] ≤ δ/4. (8)
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We define E2 as the event that err(g0, S) ≤ 3ε/4, and Ē2 as its complement. From a
standard multiplicative Chernoff bound, with probability at least 1− δ/4,

err(g0, S) ≤ err(g) +

√
3 err(g) ln(4/δ)

|S|
≤ ε

4
+

√
3ε

4
· ln(4/δ)

|S|
≤ ε

4
+

√
3ε

4
· ε

3
=

3ε

4

Thus, if |S| ≥ (3/ε) log(4/δ), which is the case due to Equation (5),

PrS∼Pm [Ē2] = PrS∼Pm

[
err(g0, S) >

3ε

4

]
≤ δ

4
. (9)

Therefore, we have

PrS∼Pm,A[err(hA) > ε]

≤ PrS∼Pm,A[err(hA) > ε | E1 ∩ E2] + PrS∼Pm [Ē1] + PrS∼Pm [Ē2]

≤ PrS∼Pm,A

[
err(hA, S) > err(g0, S) +

(
9

10
− 3

4

)
ε | E1 ∩ E2

]
+ δ/4 + δ/4

≤ PrS∼Pm,A

[
err(hA, S) > err(g0, S) +

3ε

20
| E1 ∩ E2

]
+ δ/2

≤ |G| exp

(
−3ε|S|

20

)
+ δ/2

≤
(

16κ̂

ε

)dU
exp

(
−3ε|S|

20

)
+ δ/2

≤ δ/2 + δ/2 = δ.

Here, the second step follows from the definition of events E1 and E2 and from Equations (8)
and (9), the third step follows from simple algebra, the fourth step follows from Lemma 18,
the fifth step from the bound on |G| and the final step from Equation (5).

C.4. Examples

Lemma 20 Let U be uniform over the unit sphere Sn−1, and let D be defined as in Exam-
ple 2. Then, D is

1

1− 2 exp(−nγ2/2)
-smooth

with respect to U .

Proof From (Ball, 1997), we know that Prx∼U [x ∈ W ] ≥ 1 − 2 exp(−nγ2/2). Thus, for
any set A ⊆ Sn−1, we have

Prx∼D[x ∈ A] = Prx∼D[x ∈ A ∩W ] =
Prx∼U [x ∈ A ∩W ]

Prx∼U [x ∈W ]
≤ Prx∼U [x ∈ A]

1− 2 exp(−nγ2/2)
.

This means D is κ-smooth with respect to U for

κ =
1

1− 2 exp(−nγ2/2)
.
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Lemma 21 Let U be uniform over the unit sphere Sn−1 and let D be defined as in Exam-
ple 3. Then, D is (

2

1− γ

)n−1
2

-smooth

with respect to U .

Proof From (Ball, 1997), we know that Prx∼U [x ∈ Sn−1 \W ] = Prx∼U [x /∈ W ] ≥ ((1 −
γ)/2)(n−1)/2. Therefore, for any A ⊆ Sn−1, we have

Prx∼D[x ∈ A] = Prx∼D[x ∈ A \W ] =
Prx∼U [x ∈ A \W ]

Prx∼U [x ∈ Sn−1 \W ]
≤ Prx∼U [x ∈ A](

1−γ
2

)n−1
2

.

This means D is κ-smooth with respect to U for

κ =

(
2

1− γ

)n−1
2

.

Appendix D. Proofs from Section 5

D.1. Some lemmas

Lemma 22 Let S := {(x1, y1), . . . , (xm, ym)} ⊆ X × {±1} be a labeled dataset of size m,
α ∈ (0, 1), and k ≥ 0.

1. If a learning algorithm A guarantees α-privacy and outputs a hypothesis from H, then
for all S′ := {(x′1, y′1), . . . , (x′m, y

′
m)} ⊆ X × {±1} with (xi, yi) = (x′i, y

′
i) for at least

|S| − k such examples,

∀G ⊆ H � PrA [A(S) ∈ G] ≥ PrA
[
A(S′) ∈ G

]
· exp (−kα) .

2. If a learning algorithm A guarantees α-label privacy and outputs a hypothesis from H,
then for all S′ := {(x1, y

′
1), . . . , (xm, y

′
m)} ⊆ X ×{±1} with yi = y′i for at least |S| − k

such labels,

∀G ⊆ H � PrA [A(S) ∈ G] ≥ PrA
[
A(S′) ∈ G

]
· exp (−kα) .

Proof We prove just the first part, as the second part is similar. For a labeled dataset S′

that differs from S in at most k pairs, there exists a sequence of datasets S(0), . . . , S(`) with
` ≤ k such that S(0) = S′, S(`) = S, and S(j) differs from S(j+1) in exactly one example for
1 ≤ j < `. In this case, if A guarantees α-privacy, then for all G ⊆ H,

PrA

[
A(S(0)) ∈ G

]
≤ PrA

[
A(S(1)) ∈ G

]
· eα

≤ PrA

[
A(S(2)) ∈ G

]
· e2α

≤ . . .

≤ PrA

[
A(S(`)) ∈ G

]
· e`α
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and therefore

PrA [A(S) ∈ G] ≥ PrA
[
A(S′) ∈ G

]
· e−`α ≥ PrA

[
A(S′) ∈ G

]
· e−kα.

Lemma 23 There exists a constant C > 1 such that the following holds. Let H be a
hypothesis class with VC dimension V , and let D be distribution over X . Fix any r ∈ (0, 1),
and let X be an i.i.d. sample of size m from D. If

m ≥ CV

r
log

C

r
,

then the following holds with probability at least 1/2:

1. every pair of hypotheses {h, h′} ⊆ H for which ρX(h, h′) > 2r has ρD(h, h′) > r;

2. for all h0 ∈ H, every (6r)-packing of (BD(h0, 12r), ρD) is a (4r)-packing of
(BX(h0, 16r), ρX).

Proof This is a consequence of Lemma 17. To show the first part, we plug in Lemma 17
with εm = r/2.

To show the second part, we use two applications of Lemma 17. Let h and h′ be any two
hypotheses in any (6r)-packing of (BD(h0, 12r), ρD); we first use Lemma 17 with εm = r/3
to show that for all such h and h′, ρX(h, h′) > 4r. Next we need to show that all h in
any (6r)-packing of (BD(h0, 12r), ρD) has ρX(h, h0) ≤ 16r; we show this through a second
application of Lemma 17 with εm = r/3.

D.2. Proof of Theorem 12

We prove the contrapositive: that if ε ≤ ∆/2 and PrX∼Dm,A[A(SX,h∗) ∈ BD(h∗, ε)] > 1/2
for all h∗ ∈ H, then m > log(2d

′′−1)/α. So pick any ε ≤ ∆/2. By Lemma 15, there exists
an h0 ∈ H and P ⊆ H such that P is a (2ε)-packing of (BD(h0, 4ε), ρD) of size ≥ 2d

′′
. For

any h, h′ ∈ P such that h 6= h′, we have BD(h, ε) ∩BD(h′, ε) = ∅ by the triangle inequality.
Therefore for any h ∈ P and any X ′ ⊆ X of size m,

PrA
[
A(SX′,h) /∈ BD(h, ε)

]
≥

∑
h′∈P\{h}

PrA
[
A(SX′,h) ∈ BD(h′, ε)

]
≥

∑
h′∈P\{h}

PrA
[
A(SX′,h′) ∈ BD(h′, ε)

]
· e−αm,

where the second inequality follows by Lemma 22 because SX′,h and SX′,h′ can differ in at
most (all) m labels. Now integrating both sides with respect to X ′ ∼ Dm shows that if
PrX∼Dm,A[A(SX,h∗) ∈ BD(h∗, ε)] > 1/2 for all h∗ ∈ H, then for any h ∈ P ,

1

2
> PrX∼Dm,A [A(SX,h) /∈ BD(h, ε)] ≥

∑
h′∈P\{h}

PrX∼Dm,A
[
A(SX′,h′) ∈ BD(h′, ε)

]
· e−αm

> (|P | − 1) · 1

2
· e−αm
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which in turn implies m > log(|P | − 1)/α ≥ log(2d
′′ − 1)/α ≥ log(2d

′′−1)/α, as d′′ is always
≥ 1.

D.3. Proof of Lemma 11

Let h0 ∈ H and P be an s-packing of BX(h0, 4s) ⊆ H. Say the algorithm A is good for
h if PrA[A(SX,h) ∈ BX(h, s/2)] ≥ 1/2. Note that A is not good for h ∈ P if and only if
PrA[A(SX,h) /∈ BX(h, s/2)] > 1/2. Therefore, it suffices to show that if A is good for at
least |P |/2 hypotheses in P , then m ≥ (log((|P |/2)− 1)/(8αs).

By the triangle inequality and the fact that P is an s-packing, BX(h, s/2)∩BX(h′, s/2) =
∅ for all h, h′ ∈ P such that h 6= h′. Therefore for any h ∈ P ,

PrA [A(SX,h) /∈ BX(h, s/2)] ≥
∑

h′∈P\{h}

PrA
[
A(SX,h) ∈ BX(h′, s/2)

]
.

Moreover, for all h, h′ ∈ P , we have ρX(h, h′) ≤ ρX(h0, h) + ρX(h0, h
′) ≤ 8s by the triangle

inequality, so SX,h and SX,h′ differ in at most 8sm labels. Therefore Lemma 22 implies

PrA
[
A(SX,h) ∈ BX(h′, s/2)

]
≥ PrA

[
A(SX,h′) ∈ BX(h′, s/2)

]
· e−8sm

for all h, h′ ∈ P . If A is good for at least |P |/2 hypotheses h′ ∈ P , then for any h ∈ P such
that A is good for h, we have

1

2
≥ PrA [A(SX,h) /∈ BX(h, s/2)]

≥
∑

h′∈P\{h}

1[A is good for h] · PrA
[
A(SX,h′) ∈ BX(h′, s/2)

]
· e−8sm

≥
∑

h′∈P\{h}

1[A is good for h] · 1

2
· e−8sm

≥
(
|P |
2
− 1

)
· 1

2
· e−8sm

which in turn implies m ≥ log((|P |/2)− 1)/(8s).

D.4. Proof of Theorem 10

We need the following lemma.

Lemma 24 There exists a constant C > 1 such that the following holds. Let H be a
hypothesis class with VC dimension V , D be a distribution over X , X be an i.i.d. sample
from D of size m, A be a learning algorithm that guarantees α-label privacy and outputs a
hypothesis in H, and ∆ be the diameter of (H, ρD). If r ∈ (0,∆/6) and

CV

r
log

C

r
≤ m <

log
(
2d−1 − 1

)
32αr

where d := ddim12r(H, ρD), then there exists a hypothesis h∗ ∈ H such that

PrX∼Dm,A [A(SX,h∗) /∈ BD(h∗, r)] ≥ 1

8
.
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Proof First, assume r and m satisfy the conditions in the lemma statement, where C is
the constant from Lemma 23. Also, let h0 ∈ H and P ⊆ H be such that P is a (6r)-packing
of (BD(h0, 12r), ρD) of size |P | ≥ 2d; the existence of such an h0 and P is guaranteed by
Lemma 15.

We first define some events in the sample space of X and A. For each h ∈ H, and a
sample X, let E1(h,X) be the event that

A(SX,h) makes more than 2rm mistakes on SX,h (i.e., ρX(h,A(SX,h)) > 2r).

Given a sample X, let φ(X) be a 0/1 random variable which is 1 when the following
conditions hold:

1. every pair of hypotheses {h, h′} ⊆ H for which ρX(h, h′) > 2r has ρD(h, h′) > r; and

2. for all h0 ∈ H, every (6r)-packing of (BD(h0, 12r), ρD) is a (4r)-packing of
(BX(h0, 16r), ρX)

(i.e., the conclusion of Lemma 23). Note that conditioned on E1(h,X) and φ(X) = 1, we
have ρX(h,A(SX,h)) > 2r and thus ρD(h,A(SX,h)) > r, so PrX∼Dm,A[E1(h,X), (φ(X) =
1)] ≤ PrX∼Dm,A[ρD(h,A(SX,h)) > r]. Therefore it suffices to show that there exists h∗ ∈ H
such that PrX∼Dm,A[E1(h∗, X), (φ(X) = 1)] ≥ 1/8.

The lower bound on m and Lemma 23 ensure that

PrX∼Dm [φ(X) = 1] ≥ 1

2
. (10)

Also, if the unlabeled sample X is such that φ(X) = 1 holds, then the set P is a (4r)-
packing of (BX(h0, 16r), ρX). Therefore, the upper bound on m and Lemma 11 (with
s = 4r) imply that for all such X, there exists Q ⊆ P of size at least |P |/2 such that
PrA[E1(h,X) | φ(X) = 1] ≥ 1/2 for all h ∈ Q. In other words,∑

h∈P
PrA [E1(h,X) | φ(X) = 1] =

∑
h∈P

EA [1[E1(h,X)] | φ(X) = 1] ≥ |P |
4
. (11)

Combining Equations (10) and (11) gives

∑
h∈P

PrX∼Dm,A [E1(h,X), φ(X) = 1]

=
∑
h∈P

EX∼Dm,A [1[E1(h,X)]|φ(X) = 1] · PrX∼Dm [φ(X) = 1]

=
∑
h∈P

EX∼DmEA [1[E1(h,X)]|φ(X) = 1] · PrX∼Dm [φ(X) = 1]

= EX∼Dm
[∑
h∈P

EA [1[E1(h,X)] | φ(X) = 1]

]
· PrX∼Dm [φ(X) = 1]

≥ |P |
4

PrX∼Dm [φ(X) = 1]

≥ |P |
8
.
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Here the first step follows because φ(X) is a 0/1 random variable, the fourth step follows
from Equation (11) and the fifth step follows from Equation (10).

Therefore there exists some h∗ ∈ P such that PrX∼Dm,A[E1(h∗, X), φ(X) = 1] ≥ 1/8.

Proof [Proof of Theorem 10] Assume

ε <
∆

24CV log(6C/∆)
, α ≤

log
(

2d
′−1 − 1

)
32CV log(C/ε)

, and m <
log
(
2d−1 − 1

)
32αε

where C is the constant from Lemma 24. The proof is by case analysis, based on the value
of m.

Case 1: m < 1/(4ε).
Since ε < ∆/2, Lemma 15 implies that there exists a pair {h, h′} ⊆ H such that

ρD(h, h′) > 2ε but ρD(h, h′) ≤ 4ε. Using the bound on m and the fact ε ≤ 1/5, we have

PrX∼Dm [ρX(h, h′) = 0] ≥ (1− 4ε)m ≥ (1− 4ε)
1
4ε >

1

8
.

This means that PrX∼Dm [hA := A(SX,h) = A(SX,h′)] ≥ 1/8. By the triangle inequality,
BD(h, ε) ∩BD(h′, ε) = ∅. So if, say, PrX∼Dm,A[hA ∈ BD(h, ε)] ≥ 1/8, then PrX∼Dm,A[hA /∈
BD(h′, ε)] ≥ 1/8. Therefore PrX∼Dm,A[hA /∈ BD(h∗, ε)] ≥ 1/8 for at least one h∗ ∈ {h, h′}.

Case 2: 1/(4ε) ≤ m < (CV/ε) log(C/ε).
First, let r > 0 be the solution to the equation (CV/r) log(C/r) = m, so r > ε. Moreover,

the bound on m and ε imply

m ≥ 1

4ε
>
CV

∆/6
log

C

∆/6

so r < ∆/6. Finally, using the bound on α, definition of d′, and fact r > ε, we have

α ≤
log
(

2d
′−1 − 1

)
32CV log C

ε

<
log
(

2d
′′−1 − 1

)
32CV log C

r

where d′′ := ddim12r(H, ρD); this implies

m =
CV

r
log

C

r
<

log
(

2d
′′−1 − 1

)
32αr

.

The conditions of Lemma 24 are thus satisfied, which means there exists h∗ ∈ H such that
PrX∼Dm,A[A(SX,h∗) /∈ BD(h∗, r)] ≥ 1/8.

Case 3: (CV/ε) log(C/ε) ≤ m < log(2d−1 − 1)/(32αε).
The conditions of Lemma 24 are satisfied in this case with r := ε < ∆/6, so there exists

h∗ ∈ H such that PrX∼Dm,A[ρD(h∗,A(SX,h∗)) > ε] ≥ 1/8.

29



Chaudhuri Hsu

D.5. Example

The following lemma shows that ifD is the uniform distribution on Sn−1, then ddimr(H, ρD) ≥
n− 2 for all scales r > 0.

Lemma 25 Let H := Hlinear be the class of linear separators through the origin in Rn and
D be the uniform distribution on Sn−1. For any u ∈ Sn−1 and any r > 0, there exists an
(r/2)-packing of (BD(hu, r), ρD) of size at least 2n−2.

Proof Let µ be the uniform distribution over H; notice that this is also the uniform
distribution over Sn−1.

We call a pair hypotheses hv and hw in H close if ρD(hv, hw) ≤ r/2. Observe that if
any set of hypotheses has no close pairs, then it is an (r/2)-packing.

Using a technique due to Long (1995), we now construct an (r/2)-packing of BD(hu, r)
by first randomly choosing hypotheses in BD(hu, r), and then removing hypotheses until
no close pairs remain. First, we bound the probability p that two hypotheses hv and hw,
chosen independently and uniformly at random from BD(hu, r), are close:

p = Pr(hv ,hw)∼µ2 [ρD(hv, hw) ≤ r/2 | hv ∈ BD(hu, r) ∧ hw ∈ BD(hu, r)]

=
Pr(hv ,hw)∼µ2 [ρD(hv, hw) ≤ r/2 ∧ hv ∈ BD(hu, r) | hw ∈ BD(hu, r)]

Prhv∼µ[hv ∈ BD(hu, r)]

≤
Pr(hv ,hw)∼µ2 [ρD(hv, hw) ≤ r/2 | hw ∈ BD(hu, r)]

Prhv∼µ[hv ∈ BD(hu, r)]

=
Pr(hv ,hw)∼µ2 [hv ∈ BD(hw, r/2) | hw ∈ BD(hu, r)]

Prhv∼µ[hv ∈ BD(hu, r)]

=
Pr(hv ,hw)∼µ2 [hv ∈ BD(hu, r/2)]

Prhv∼µ[hv ∈ BD(hu, r)]

= 2−(n−1).

where the second-to-last equality follows by symmetry, and the last equality follows by the
fact that BD(hu, r) corresponds to a (n−1)-dimensional spherical cap of Sn−1. Now, choose
N := 2n−1 hypotheses hv1 , . . . , hvN independently and uniformly at random from BD(hu, r).
The expected number of close pairs among these N hypotheses is

M := E

∑
i<j

1[hvi and hvj are close]


=
∑
i<j

Pr
[
hvi and hvj are close

]
=
∑
i<j

p

≤
(
N

2

)
· 2−(n−1).

Therefore, there exists N hypotheses hv1 , . . . , hvN in BD(hu, r) among which there are at
most M close pairs. Removing one hypothesis from each such close pair leaves a set of at
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Algorithm A2.
Input: private labeled dataset S ⊆ X × {±1}, privacy parameter α ∈ (0, 1),
accuracy parameter ε ∈ (0, 1), confidence parameter δ ∈ (0, 1).
Output: hA ∈ H.

1. Let G be a (ε/4)-cover for (H, ρX) that is also an (ε/4)-packing.

2. Randomly choose hA ∈ G according to the distribution (pg : g ∈ G), where
pg ∝ exp(−α|S| err(g, S)/2) for each g ∈ G, and return hA.

Figure 3: Learning algorithm for α-label privacy.

least N −M hypotheses with no close pairs—this is our (r/2)-packing of BD(hu, r). Since
N = 2n−1, the cardinality of this packing is at least

N −M ≥ 2n−1 −
2n−1

(
2n−1 − 1

)
2

· 2−(n−1) > 2n−2.

Appendix E. Upper bounds for learning with α-label privacy

Algorithm A2 for learning with α-label privacy, given in Figure 3, differs from the algorithms
for learning with α-privacy in that it is able to use the unlabeled data itself to construct a
finite set of candidate hypotheses. The algorithm and its analysis are very similar to work
due to Chaudhuri et al. (2006); we give the details for completeness.

Theorem 26 Algorithm A2 preserves α-label privacy.

Proof The algorithm only accesses the labels in S in the final step. It follows from stan-
dard arguments in (McSherry and Talwar, 2007) that α-label privacy is guaranteed.

Theorem 27 Let P be any probability distribution over X × {±1} whose marginal over X
is D. There exists a universal constant C > 0 such that for any α, ε, δ ∈ (0, 1), the following
holds. If S ⊆ X × {±1} is an i.i.d. random sample from P of size

m ≥ C ·
(
η

ε2
+

1

ε

)
·
(
V log

1

ε
+ log

1

δ

)
+
C

αε
· log

EX∼Dm [Nε/8(H, ρX)]

δ

where η := infh′∈H Pr(x,y)∼P [h′(x) 6= y] and V is the VC dimension of H; then with proba-
bility at least 1− δ, the hypothesis hA ∈ H returned by A2(S, α, ε, δ) satisfies

Pr(x,y)∼P [hA(x) 6= y] ≤ η + ε.

31



Chaudhuri Hsu

Remark 28 The first term in the sample size requirement (which depends on VC dimen-
sion) can be replaced by distribution-based quantities used for characterizing uniform con-
vergence such as those based on l1-covering numbers (Pollard, 1984).

Proof Let err(h) := Pr(x,y)∼P [h(x) 6= y], and let h∗ ∈ H minimize err(h) over h ∈ H. Let
S := {(x1, y1), . . . , (xm, ym)} be the i.i.d. sample drawn from Pm, and X := {x1, . . . , xm}
be the unlabeled components of S. Let g0 ∈ G minimize err(g, S) over g ∈ G. Since G
is an (ε/4)-cover for (H, ρX), we have that err(g0, S) ≤ infh′∈H err(h′, S) + ε/4. Since G
is also an (ε/4)-packing for (H, ρX), we have that |G| ≤ Nε/8(H, ρX) (Pollard, 1984). Let
F := {fh : h ∈ H} where fh(x, y) := 1[h(x) 6= y]. We have E(x,y)∼P [fh(x, y)] = err(h) and
m−1

∑
(x,y)∈S fh(x, y) = err(h, S). Let E be the event that for all h ∈ H,

err(h, S) ≤ err(h) +
√

err(h)εm + εm and err(h) ≤ err(h, S) +
√

err(h)εm

where εm := (8V log(2em/V ) + 4 log(16/δ))/m. By Lemma 16, the fact S(F , n) = S(H, n),
and union bounds, we have PrS∼Pm [E] ≥ 1− δ/2. Now let E′ be the event that

err(hA, S) ≤ err(g0, S) + tm

where tm := 2 log(2EX∼Dm [|G|]/δ)/(αm). The probability of E′ can be bounded as

PrS∼Pm,A[E′] = 1− PrS∼Pm,A[err(hA, S) > err(g0, S) + tm]

= 1− ES∼Pm [PrA [err(hA, S) > err(g0, S) + tm | S]]

≥ 1− ES∼Pm
[
|G| exp

(
−αmtm

2

)]
= 1− EX∼Dm [|G|] · exp

(
−αmtm

2

)
≥ 1− δ

2

where the first inequality follows from Lemma 18, and the second inequality follows from
the definition of tm. By the union bound, PrS∼Pm,A[E ∩ E′] ≥ 1− δ. In the event E ∩ E′,
we have

err(hA)− err(h∗) ≤ err(hA)− err(hA, S) + err(h∗, S)− err(h∗) + err(hA, S)− err(h∗, S)

≤
√

err(hA)εm +
√

err(h∗)εm + εm + err(g0, S)− err(h∗, S) + tm

≤
√

err(hA)εm +
√

err(h∗)εm + εm + ε/4 + tm

since err(g0, S) ≤ infh′∈H err(h′, S) + ε/4 ≤ err(h∗, S) + ε/4. By various algebraic manipu-
lations, this in turn implies

err(hA) ≤ err(h∗) + C ′ ·
(√

err(h∗)εm + εm + tm

)
+ ε/2

for some constant C ′ > 0. The lower bound on m now implies the theorem.
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